Selected Publications

Dziekan JM, Wirjanata G, Dai L. Cellular thermal shift assay for the identification of drug–target interactions in the Plasmodium falciparum proteome. (2020) Nature Protocols. DOI:10.1038/s41596-020-0310-z

Prabhu N, Dai L, Nordlund P. CETSA in integrated proteomics studies of cellular processes. (2020) Curr Opin Chem Biol. DOI: 10.1016/j.cbpa.2019.11.004

Perrin J, Werner T, Kurzawa N, Rutkowska A et al. Identifying drug targets in tissues and whole blood with thermal-shift profiling (2020) Nature Biotechnology. DOI: 10.1038/s41587-019-0388-4

Dai L, Prabhu N, Yu LY, Bacanu S, et al. Horizontal Cell Biology: Monitoring Global Changes of Protein Interaction States with the Proteome-Wide Cellular Thermal Shift Assay (CETSA). (2019) Annu Rev Biochem. DOI: 10.1146/annurev-biochem-062917-012837

Dziekan JM, Yu H, Chen D, Dai L, et al. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. (2019) Sci Transl Med. DOI: 10.1126/scitranslmed.aau3174

Henderson MJ, Holbert MA, Simeonov A, Kallal LA. High-Throughput Cellular Thermal Shift Assays in Research and Drug Discovery. (2019) SLAS Discov. DOI: 10.1177/2472555219877183

Kawatkar A, Schefter M, Hermansson NO, Snijder A, et al. CETSA beyond Soluble Targets: a Broad Application to Multipass Transmembrane Proteins. (2019) ACS Chem Biol. DOI: 10.1021/acschembio.9b00399

Langebäck A, Bacanu S, Laursen H, Mout L, et al. CETSA-based target engagement of taxanes as biomarkers for efficacy and resistance. (2019) Sci Rep. DOI: 10.1038/s41598-019-55526-8

Shaw J, Dale I, Hemsley P, Leach L, et al. Positioning High-Throughput CETSA in Early Drug Discovery through Screening against B-Raf and PARP1. (2019) SLAS Discov. DOI: 10.1177/2472555218813332

Sridharan S, Kurzawa N, Werner T, Günthner I, et al. Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. (2019) DOI: 10.1038/s41467-019-09107-y

Subramanian G, Johnson PD, Zachary T, Roush N, et al. Deciphering the Allosteric Binding Mechanism of the Human Tropomyosin Receptor Kinase A (hTrkA) Inhibitors. (2019) ACS Chem Biol. DOI: 10.1021/acschembio.9b00126

Sun W, Dai L, Yu H, Puspita B, et al. Monitoring structural modulation of redox-sensitive proteins in cells with MS-CETSA. (2019) Redox Biology. DOI: 10.1016/j.redox.2019.101168

Axelsson H, Almqvist H, Otrocka M, Vallin M, et al. In Situ Target Engagement Studies in Adherent Cells. (2018) ACS Chem. Biol. DOI: 10.1021/acschembio.7b01079

Becher I, Andrés-Pons A, Romanov N, Stein F, et al. Pervasive Protein Thermal Stability Variation during the Cell Cycle. (2018) Cell. DOI: 10.1016/j.cell.2018.03.053

Brent D. G. Page, Nicholas C. K. Valerie, Roni H.G. Wright, Olov Wallner, et al. Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells. (2018) Nature Communications. DOI: 10.1038/s41467-017-02293-7

Comess KM, McLoughlin SM, Oyer JA, Richardson PL, et al. (2018) J Med Chem. Emerging Approaches for the Identification of Protein Targets of Small Molecules – A Practitioners’ Perspective. DOI: 10.1021/acs.jmedchem.7b01921

Lebraud H, Surova O, Courtin A, O’Reilly, et al. (2018) Chemical Science. Quantitation of ERK1/2 inhibitor cellular target occupancies with a reversible slow off-rate probe. DOI: 10.1039/c8sc02754d

Lim YT, Prabhu N, Dai L, Go KD, et al. An efficient proteome-wide strategy for discovery and characterization of cellular nucleotide-protein interactions. (2018) PLoS One. DOI: 10.1371/journal.pone.0208273

Lingyun D, Tianyun Z, Xavier B, Wendi S, et al. Modulation of Protein-Interaction States through the Cell Cycle. (2018) Cell. DOI: 10.1016/j.cell.2018.03.065

Miettinen TP, Peltier J, Härtlova A, Gierliński M, et al. Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib. (2018) EMBO J. DOI: 10.15252/embj.201798359

Shaw J, Leveridge M, Norling C, Karén J, Molina DM, O’Neill D, Dowling JE, Davey P, Cowan S, Dabrowski M, Main M, Gianni D. Determining direct binders of the Androgen Receptor using a high-throughput Cellular Thermal Shift Assay. (2018) Nature, Scientific REPORTS. DOI: 10.1038/s41598-017-18650-x

Savitski MM, Zinn N, Faelth-Savitski M, Poeckel D, et al. (2018) Cell. Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis. DOI: 10.1016/j.cell.2018.02.030

Seashore-Ludlow B, Axelsson H, Almqvist H, Dahlgren B, et al. (2018) Biochemistry. Quantitative Interpretation of Intracellular Drug Binding and Kinetics Using the Cellular Thermal Shift Assay. DOI: 10.1021/acs.biochem.8b01057

Shaw J, Dale I, Hemsley P, Leach L, et al. Positioning High-Throughput CETSA in Early Drug Discovery through Screening against B-Raf and PARP1. (2018) Sage Journals. DOI: 10.1177/2472555218813332

Tan CSH, Go KD, Bisteau X, Dai L, et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells .(2018) Science. DOI: 10.1126/science.aan0346

 

Kettle JG, Alwan H, Bista M, Breed J, Davies NL, et al. Potent and Selective Inhibitors of MTH1 Probe Its Role in Cancer Cell Survival. (2017) Journal of Medicinal Chemistry DOI: 10.1021/acs.jmedchem.5b01760

Mayumi Kitagawa, Pei-Ju Liao, Kyung Hee Lee, Jasmine Wong, See Cheng Shang, et al. Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality. (2017) Nature Communications. DOI: 10.1038/s41467-017-02287-5

Schuetze KB, Stratton MS, Blakeslee WW, Wempe MF, Wagner FF, et al. Overlapping and Divergent Actions of Structurally Distinct HDAC Inhibitors in Cardiac Fibroblasts. (2017) J. Pharmacol. Exp. Ther. DOI: https://doi.org/10.1124/jpet.116.237701

Tsuyoshi Ishii, Takuro Okai, Misa Iwatani-Yoshihara, et al. CETSA quantitatively verifies in vivo target engagement of novel RIPK1 inhibitors in various biospecimens. (2017) Nature Scientific Reports. DOI: 10.1038/s41598-017-12513-1

Almqvist H, Axelssson H, Rozbeh J, Dan C, Mateus A, Haraldsson M, Larsson A, Martinez Molina D, Artursson P, Lundbäck T, Nordlund P. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil. (2016) Nature Communications 7:11040

Exell JC, Thompson MJ, Finger LD, Shaw SJ, Debreczeni J, et al. Cellularly active N-hydroxyurea FEN1 inhibitors block substrate entry to the active site. (2016) Nature Chem. Biol. DOI:10.1038/nchembio.2148

Martinez Molina D, Nordlund P. The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies. (2016) Annu. Rev. Pharmacol. Toxicol. 56:141-161

Thorsell A-G, Ekblad T, Karlberg T, Löw M, Pinto A F, Tresaugues L, Moche M, Cohen M S and Shüler H. Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. (2016) J. Med. Chem. DOI: 10.1021/acs.jmedchem.6b00990

Xu H, Gopalsamy A, Hett E, Salter S, Aulabaugh A, Kyne R, Pierce B, Jones LH. Cellular Thermal Shift and Clickable Chemical Probe Assays for the Determination of Drug-Target Engagement in Live Cells. (2016) Org. Biomol. Chem. DOI: 10.1039/C6OB01078D

Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. (2015) Nat. Chem. Biol. 11:432–3

Franken H, Mathieson T, Childs D, Sweetman GMA, Werner T, et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. (2015) Nature Protocols 10:1567-1593

Malik R, Khan AP, Asangani IA, Cieślik M, Prensner JR, et al. Targeting the MLL complex in castration-resistant prostate cancer. (2015) Nat. Med. 21:344–52

Qin JJ, Wang W, Voruganti S, Wang H, Zhang WD, Zhang R. Identification of a new class of natural product MDM2 inhibitor: in vitro and in vivo anti-breast cancer activities and target validation. (2015) Oncotarget 6:2623–40

Reinhard FBM, Eberhard D, Werner T, Franken H, Childs D, et al. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. (2015) Nature Methods 12:1129-1131

Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P, et.al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. (2015) eLife 4:e07314

Tan BX, Brown CJ, Ferrer FJ, Yuen TY, Quah ST, et al. Assessing the efficacy of Mdm2/Mdm4- inhibiting stapled peptides using cellular thermal shift assays. (2015) Sci. Rep. 5:12116

Bai L, Chen J, McEachern D, Liu L, Zhou H, et al. BM-1197: a novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. (2014) PLOS ONE 9:e99404

Bradley WD, Arora S, Busby J, Balasubramanian S, Gehling VS, et al. EZH2 inhibitor efficacy in non-Hodgkin’s lymphoma does not require suppression of H3K27 monomethylation. (2014) Chem. Biol. 21:1463–75

Huber KVM et al. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. (2014) Nature 508(7495na):222–227

Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundbäck T, Nordlund P, Martinez Molina D. The cellular thermal shift assay for evaluating drug target interactions in cells. (2014) Nature Protocols 9(9):2100-2122

Khoo KH, Verma CS and Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. (2014) Nature Reviews Drug Discovery 13(3):217-236

Miettinen TP, Björklund M. NQO2 is a reactive oxygen species generating off-target for ac- etaminophen. (2014) Mol. Pharm. 11:4395–404

Sackton KL, Dimova N, Zeng X, Tian W, Zhang M, et al. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. (2014) Nature 514:646–49

Savitski MM, Reinhard FBM, Franken H, Werner T, Savitski MF, Eberhard D, Martinez Molina D, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. (2014) Science 346. DOI: 10.1126/science.1255784

Martinez Molina D, Jafari R, Ignatushcenko M, Seki T, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. (2013) Science. DOI:10.1126/science.1233606